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— ~ .!~. + f~~~(t—t)u(T)dt 0

= 

~o’ ~~~~~~~ 
= !o ~o’ !o c (~~~~~~3)

u( T ) = U ( T ) , —~~< T < O  
_______

I

which lies in a class of bounded perturbations1of the form

= {v C C
2([0,00); (H~ (c~))

3) t s u P I I v ( i (~~~ 3 � N } ~~~\ _ _ _ _ _ _ _

.~or some N > 0, where ~J , K(t) C Ls
((H

~
(12))3; (R~~(c2))

3
) t C 

~~~~~~~~~~~~ ~ An

application is given to the nonexistence of globally bounded solutions, to
initial—history boundary value problems for Maxwell—Hopkinson dielectrics, which
lie in classes of bounded functions of the form

_ _ _ _ _

-

~ 

i 

tiM’ C/4fS’ ?~(p.a.i..; ‘i~Ø 
u iuO~~~~V d  SII4~~ j O NOUV~~IjIS 13 A 1IMfl~~3S



- 
_ _ _

F -

‘~°~
79 31 LEVEL 

. .

~~~~~~~~

-
. .

On the Nonexistence of Globally Bounded Solutions*

to Initial—History Value Problems for Integrodifferentia]. Equations

Frederick Bloom

Department of Mathematics, Computer Science, and Statistics

University of South Carolina
Columbia, S.C.

*Research supported in par t by AFOSR Crant 77—3396

*IçIr~~~sd for ~ ~1c release ;

~t t ~ibutton ~i~
-j t. i t od.

/ 
-

.
~~~ ~~~~~~~~~~~~~~~~~~ ., ~~~~~~~~~~~~ .~~~~~. ~~~ ,..~

.. ~~~~~~~~~~~~~~~~~~~~ 
. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— — —________ . — 
~~~~

—

—- - ,_.,____ . ~~~~~~~~~~~~~ ,,~ 
.
-.----- .- ~~~~~~~~~~~~~~~~~~~~ 

sa a.. -- -S



1. Introduction

In several recent papers [lJ — [4J  we have reported results on growth

estimates for solutions to initial—history boundary value problems associated

with integrodifferen tial equations and have presented applications in mechanics

(viscoelasticity) and electromagnetic theory (rigid , nonconducting material

dielectrics). The problems examined may all be placed in the following

co~ non abstract setting: Let H, H+ be real Hu bert spaces with inner—products

> and < >~ respectively , and associated natural norms II (•) (I and

I I (‘fl 1+; we assume that H4 c H both algebraically and topological].y with

Y > 0 the embedding constant for the identity map i: H~ 
-

~ H. Let H_ be the

dual space of via the inner product of H, so that

IlyiL sup v, w > j / Hy iI~J, and let
w e H 4

N £ L8(R~,Ii_ ) ,  K( ’)  € L2((—~°,~
); L50i+,H_ ))

where L8
(H4H_) denotes the space of all bounded linear maps from H+ into

H. We then consider the abstract initial—history value problem for

C
2([O,T); 11+) ,  T > 0

— .!~~~.‘ f~~X(t—t)u(T)dt —

(1.1) u(0) 
~~~~~
, ~~(O) ~~ (~~, ~~ C Ii)

Different assumptions on the past history U are made in the various applications ,

i.e. in £2] it is assumed that U(~) 
C C

1( (_0D ,O);  11+) with
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lim_ I IU(t) — f Ii~ ’ o, iim_ tI j ~ — .&II~ 0, urn II~(t) II 4 0 and
t-pO t-’O

f~,I I~(~) 4dt < ~ while in [3] we assume that U — 0, —
~~ < t < 0. In each

of the applications, however , no def initeness assumptions are made relative

to Nor K(•). The derivations in [1] — [4] are based on a logarithmic

convexity argument which requires that we restrict our attention, a priori,

to a class of bounded perturbations; this idea of stabilizing an otherwise

unstable solution of the ill—posed problem (1.1) is due to F. John [5]

and for the system (1.1) it is shown in [1] — [4] that the appropriate

classes of bounded perturbations are of the form

(1.2) N = {v C C( [O ,T); H4) I sup ~~ 
� N)

[0 ,T)

for some N > 0. In fact for solutions ~ C C~ ([O ,T);  
~~~ 

of (1.1) which lie

In a class of bounded perturbations of the form N, it has been shown [2]

that the real—valued function

(1.3) F ( t ;B ,t0) — Ij u ( t ) 1 1
2 

+ 8(t + t
0
)2, 0 � t < T,

with ~, to arbitrary nonnegative real numbers, satisf ies the differential

inequality

(1.4) FF — F
’2 

� —2F(2F(0) + ~),  0 � t < T

where

(1.5) F(t) — E(t) + k1 sup iIK(t ) II L ~~ H + k2 sup II!~t
(t)i i L ~ H[0 ,00) s’ +‘ —

, [0 ,00) ~~~
‘ +‘

with E(t) — ½! I~ 11 2 ½ < u, N u ~ > and k1,k2 computable nonnegative constants.

Besides the obvious assumptions on ~ required by F(O) < 00 the only other

_ _ _ _ _ _ _ _ _ _ _ _  
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A ~~~~

assumption made relative to either N or K ( )  is that
A
__

2 - 

~
.. .

. 

~~~~~~~~~~~~~~~~(1 6) — < v, K(O)v > � K I!i I~’ ~~. 
C H~ 

- 
-

I ::~~ SUP II ~t
(t)II L (H ,H).

In the application to one—dimensional isothermal viscoelasticity (1.6) reduces

to the statement that g ’(O) � —K , K � T sup Ig ’’(t)H where g(.) is the
[0,00)

relaxation function of the material; it is well—known that the relaxation

functions of one—dimensional isothermal viscoelastic materials must be

monotonically decreasing in time [6] and (1.6) simply says that g(.) must be

decreasing sufficiently fast at t — 0.

Growth estimates for I~I 1
2 follow directly from the differential

inequality (1.4) once special assumptions regarding ~ (0) , ~, t0, and the

initial data u0, 
~~ 

are made; these estimates apply, as well, to the veil—posed

situations previously considered in the literature , i.e., [7]. The restriction

in [1] — [4] to time intervals of the form [0,T), T < 00 and solutions u C N

is crucial for the logarithmic convexity argument. The purpose of this note is to

prove that under certain well—defined circumstances it is impossible that there

exis~~ a solution u ~ C
2([0 ,0 0) ;  i1~) of (1.1) which is globally bounded in the

sense that it belongs to a class of bounded perturbations of the form

(1.7) N
00 

{v C C(E0,°°) ; 
~ )I sup I I v I ! ~ � N)

[0 ,00)

for a prescribedN > Q; this will be accomplished by employing a mixed logarithmic

convexity — concavity argument of the type previously used by this author in [6];

- -~~~--_. , - - - - - -.
— ‘

~~~~~~~
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an application to the evolution of the electric induction field in a class

of rigid nonconducting material dielectrics is presented in §3.

2. The Global Nonexistence Theorem

In anticipation of the application we have in mind we shall assume a

past history U of the form

0, ~~ 00 < ~ < —t
(2.1) U(t)— 

— h

,~~ (t ) ,  —t.~ � t < 0

where th > 0 is an arbitrary real number, and I I ~~II+ C L2t—t~ ,0]. The

hypothesis (1.6) may be weakened to —

(2.2) — <~~,K(0)v>�0,~~~v c R ~

and we also ass ume that

- 

K(t) I IL(t)IIL (H ,R) satisf ies K(.) C L
1
[ 0 ,00)

(2.3) K* (t)  — “I~t ’’ L (H ,H ) dt satisf ies
8 + -

K*( )  ~ L1t0,°°) with K* (o) — 0.

The class N
00 

may be modif ied , in view of (2.1) to

{v C C([_t
h
00); H4) [ t 0 0 )~~~~

’ ’
~~ 

� NJ

for N > 0 and finite and we then want to show that the following result obtains:

Theorem Suppose K() satisfies (2.2) and (2.3) and

E(0) . ½lL!,~I I 2 
— ½ < u 0, N~~~ > < 0 with < U0, ~~~ > > 0. If, for N

0 
> 0

(finite)

- ~~~~ .I - - -

L .
~~~
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(2.4) IE(0)l �f! N~(I! K II L [0,00) + ll K *II Ll[o,~)
)

there can not exist a stron~~so1ution of (1.1) which lies in N~~00 
(N~, with

N - N
0
).

Proof: Assume that u is a strong solution of (1.1) with ~~~~C N~~00 
i.e.,

sup h u h 4 
� N0, and set G( t) — h l~(t) h I2 . Then C ’ — 2 < U , u~ >

‘

[~~t ~)

~
1 ,

h’ 

2! i~~I 1
2 + 2 < u , u

~ 
> and for any 8 > 0 we have by direct computation

(2.5) CC” — ( 84-1)G
2 

— 4(8+l)U~ + 2C( <u, 
~~~~~ 

> — ~~~~~~~~~ I L~ I 1
2)

where u~(t) — I I~I i~ ( l~~I 1 2 
— <

.~~
‘ ~~~~ 

> � 0 by the Schwarz inequality. Thus

far any 8 > 0

A .  (2.6) CC — (8+l)G 2 
� 2GR~ , 0 � t < 0 0

where, in view of (1.1) and (2.1)

(2.7) R
8
(t) — < U , N u >  — (28+l)hIu~h I 2

— < u , f
t 

K(t—t)u(t)dt >
-

Now rewrite (2.7) in the equivalent form

( 2 . 8 )  R
8
(t) —(28’4-1)(I I~~I — < ~~ N U >)

— 28 < 
.~~~ ‘ ~~~~~~ > — < 

~~~‘ 
f ~ K(t— t)u( t ) dt  >

h

— —2(284-1)E(t) — 28 < u, N u  >

— < .
~~
. ~~~~~ 

>

(1) u c C2([ 0 ,co); 
~~~ 

is a strong solution prov ided ~~ C C1([ 0 ,°°); H) and
C C( [O,00) ; R_ ).

- $~~~~~~~ - ._ 
~~~~~~~~~~~ - . — - - .  - 1

r ’ i

~
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and then take the inner—product (in H) of (1.1) with and integrate to

obtain

(2.9) E(t) = E(0) — f ~ < ~~, f~~~~
(t_x )

~
(A) dA > dT

Sustitution of (2.9) into (2.8) now yields

(2.10) R 8(t)  = —2(28f-1)E(0) — 28 < u, N u  >

+ 2(284-1) f ~ < 
~~T ’ f

~th

T_
~~~~~~

dX > dT

— < 
~~‘ f~~t~~~~

( t_ t )
.~~

(T) d1T >

We now take the inner—product (in B) of (1.1) with u(t) and obtain, in view

of the definition of G(t)

(2.11) ½G = I!~~I h 2 + < ~~ — ~ _t
h
_ >

which, in turn, implies that

(2.12) —28 < u, N u > —8F 4 28! Iu~ h I 2

—28 < ~~, jt K ( t — T ) u ( t ) d T  >

Substituting from (2.12) into (2.10) then yields

(2.13) R 8
(t ) — —8c — 2(284-l)E(0) — (281-1) < 

~~~ 
f
~th~~

t_t).
~
(T)1T >

+ 2(281-1) < u..~, 
f ~ K( T— X ) u ( X )d A > dt

and , therefore, the differential inequality (2.6) is equivalent to

_ _  
,~~~~~~~~. j  ~~~~~~ 

. j _ ~
I_i

~I-~
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(2.14) C C —  
~284-i~ 

C
2 

� — 4GE(0)  — 2G < U , ftt
K(t_t)u(t)dt >

+ 4G f ~ < u t, f~th
L(t_A )

~
0)

~~ 
> dt

2 G [2 1E ( 0 ) I — < u, f t K(t_t)uCt)dt >
— — t -~~~~ —

h

+ 2 f ~ < ui, ~~~~~~~~~~~~~~~~~~~~ 
> dTJ.

However ,

< ui, ~~ 
K (t—A)u(A)dA > — < u(T), X(0)u(t) >

h

— < (T),  f t~~T (t_A ).~
(A)

~~ 
>

- - + -~~~ < u (T) , f
~ t

h~~
(t_A )

~~
(X)

~~ 
>

and, therefore , (2.14) may be rewritten in the form

8÷1 ‘2(2.15) CC — 
~ 28Fl~ 

c � 2 G [2 1E ( 0 ) I —

2 f ~ < u(T), 
t
h 

>

— 2 
~~~~~~~~ t

h~
U
~~~~~~~~ 

>

- I + < f~t K (t— t )u ( t ) dT  >

h

where, in view of our hypothesis relative to l((0) we have dropped the term

— f ~ < u(t),K(0)u(t) > dt. The following estimates for the integrals on the

right—hand side of (~.15) now obtain: 

~~~~~~~~ 

— — 
—

~~
-,_. ,.,._ . - ..
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I < 
~~~~~~~ ~~ ~~

(T)~~Jt)d}T > I
h

I I.~~h I  ~~ I IL.(_ t ) I 1 L8
(H4,H ) I ..Ct) H +c~ �

y I I ~~h I ~ P I U I + ~th~~~ 
L ( H ~ ,H )

1~~ suP h1 u II +)2 j
t
h h l~.

(T) l ( IT �

YN~ I 1K ! ‘L [0,00)

so that

(2.16) — < 

~ O’ f~ th
L~

_T .~~
t d T  > 

~ —YN~~ IK I 1 L
1
[0 ,00)

Also,

I < .2.’ f~~t~~~(t_t).2.(T)dT 
> I

I L ~I I  ~~ l ) ~( t _ t ) I I L (H ,H ) IL2.( T ) I I +d1T �

h s + - .

y([_~~ 00)
h1 .~I I42 f_t hIL_ I I L5(H4,R ) I

~
I

t+t
~ .~~2 j . h

11 (A)!! dA

� YN2 I I K I I L [ 0 00)

and, therefor e,

(2.17) <~~~~, I ~~(t-T)~ <T)d~~> � 
_
~~ h l K I I L1[O ,00)

— Finally,

• - .  -~ - ______________

_ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~ -~~
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< (T) , f
~th
j
~~
(T_A ).

~
.(A)

~~ 
> cit I �

f ~ I < ~~(t), fi~-~~ 
(T~~~)2.

(A)&~ > I dT <

h

f o (II.~(’)I I I
~th I i~.t (T~~ ) I  1 L (H ,f l )I I.~,(A) I I 4ciA dT

� )IL_ H+) f~ f
T
~ )

= Y([ ) 1~~ I+)2 f ~ I 
+th II K (p)I I L(H4,

H ) dPdT

�YN ~ I’;; (K * (p) I0~~ dt

= Y14~ f~K*(t+t,~)dT

= ~~~ ~~ K~(A) dA � ~~
2 I I K *I I Ll[o ,00)

in view of our assumption that K*(0) 0. Thus,

(2 .18)  - f ~ < u(T), f
~th 

T-A A )dA > dT � 
_
~~I IK * I I Ll[o,00)

Combining the estimates (2.16) — (2.18) with the differential Inequality (2.15)

now yields

(2 .19)  GG — (
2

~~~~~)G 2 
� 2G [ 2 1E ( 0) I — 3YN~{ I I K I  ‘L [0,00) 

+ II K *I I L1[o,00)}3

and in view of our hypothesis (2.4), relative to I E ( 0 ) I ,  (2.19) implies that

— (2 .20 )  GC~ — (2~~~ )Gc 2 
~ 0 , o � t ~

- •- P — - - - - —  - — - - - — — - -

— -~~ ~~~~~ — —-.--.-—~ •~A=_~~.~k A . .~’
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Now set c~(8) — 84-1/284-1; note that ¼ < u(8) < 1, for all 8 > 0, with “(8) ~
as 8 -~ + 00 and cL(8) -~ 1 as 8 ‘ 0~ . Let H( t) be any real valued nonnegative

-ì twice continuously differentiable func t ion on [0 ,00) and I any real number

0< 1 < 1 ;  then

‘11) ’’ — 1 1  ‘‘ ‘2(2 .21)  [H ~ 
— 

I (t) = (l—Y)H — 
( t ) [H ( t ) H  (t) — YB (t ) ]

Applying this last identity with G(t) in place of 11(t), and y ~(8), for

any 8 > 0, and using (2.20) we easily f ind that

• ( 2 . 2 2 )  [G ”
~

8
~~ J (t) � O~ 0 � t < 00

which implies that

( 2 . 2 3 )  [G~~~~~~~~
8

~~~] (t) �

= (l—ct(8))G~~~
8
~(o) G (0)

A second integration then yields

(2.24) G~~~~~
8
~~ (t) � (1-~~(8))G ”

~
8
~ (0)G ’(O)t + C~~~~

8
~~(o)

= G U
~~~~~

8
~~~ (O) [l  + (l-~~(8) ) (G

’(o))~1

and as (1—ct(8)) > 0, for all 8 > 0,

(2.25) G(t) � G(0)  [1 + (l—a(8) ) 
(~~~~~~)t J  

l~~~~(8)

Clearly, it follows ;rom (2.25) and the fact that G ’(0) = 2 < u0, v0 > > 0

~~ - ________ 

~~~.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~



- -
.

that u r n  G(t) — + 00 But G(t) I I.~(t)l 1
2 
and therefore urn I ~(t)I j2 — + 00~

However , via the embedding of 11
+ 
into H, ~~,(t) II � i~ Iu (t) I ~~

, 0 � t < 00, and

so u rn I i~.
(
~
) 
~~ 

— + 00, which implies that sup I f,~(t) 1÷ — + 00,
C_ t

h
,00)

contradicting the assumption that u C N
0 00

Q.E.D.

Remark The above Theorem has, of course , an immediate converse, i.e., if there

exists a strong so1ution~~ C of (1.1) then E(0) must either be nonnegative

or , if E(0) < 0, then IE(0)I must be sufficiently small, i.e.,

I E ( o ) I  <~~Y N ~~I I K I ! L [0 00) + I I K * II L1EO ,00) )

If N satisfies an appropriate definiteness condition, e.g., < v, N v  > � A I I v I I ,~,
- •  ~~v C H 4, A > 0 t h e n

2E(0) = I l ;1I 2 
— N >

2 2
� I!~~h I — A II ~~I I 4 < 0

Provided ~~~~~~~~ > II;II~. In particular we would then have

2 !E(0) I > A )ju0) I.~ 
— J Lv0 1 ~2 and , therefore, if

lI~~I!~ �~ I~~ I I 2 +~~~~ ( I I K I I L [0 00) + hI K *hI Ll[o,00) N~

E 
~ i i~~t 1 2 

+ X(y,A ,N0)

it follows that no strong solution of (1.1), with initial data ~~, ~~, could

exist in N~~00; this result is noe—trivial only if

X(Y,A ,N0
) <

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ .:  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-



___ - - -~~~~

—12—

which will certainly be the case, for any N0 > 0 and f inite, if the

coerciveness constant A is suff iciently large and/or the embedding constant

I is sufficiently small.

Remark Under appropriate assumptions on ~(0) relative to

sup !L~I I L (H H ) and sup I I .~~II L (H H ) it has been shown in [2] that
[0 ,00) ~ +‘ — [Q ,00) s 4’ —

I~~I I must grow exponentially on [0,T),  T > 0 finite, for u C N . If

we replace N by N000 the exponential growth estimates for I J~IJ in [2]

remain valid on [0 ,T) but we can not take the limit as T 4 + 00 in [2]

in view of the basic hypothesis of that paper, i.e., (1.6).

Remark The estimate (2.25), valid for all 8 > 0, in fact implies that

‘I ~ 1
G(t) � G(0) lim [1 + (l_~x(8))(,~ 

(0))~~
l_c*(8)

8 ~ 
G(0)j

= G(0) exp(G
’ (O) ~), 0 ~ t < 0 0

in view of c*(8) -+ l~~ as 8 -~ 0~ and the elementary 
fact that lim (1+Ax)

A 
— e’~.

3. An Application in Electromagnetic Theory

In two recent works [3] , [7], we have considered the behavior of

electric f ields and electric displacement f ields in rigid , nonconducting

dielectrics with memory of the type introduced by Hopkinson [8] in an

effort to understand the phenomena of residual charge in Leyden jars. The

Maxwell—Hopkinson dielectric is governed by the pair of constitutive equations

~~ x,t) — E £(~,,t) + f
t,~P(t_ T)~~(x ,t)dr

(3.1)

• ~~~~~~

— 
_ _ _  _ _ _

~

_ •_ _ __ A •

~

_ _

~

_ _ _

~

_ _1_ _ __ ~~~~~~~~~~~~~~~~ ~~~~~~~~~ : .
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where, of course, D, ~~, ~j, and ,~~~~ are , respectively, the electric displacement

(or induction) f ield , the electric field , the magnetic intensity, and the

magnetic induction. It is usually assumed that 41(t), t � 0, is a (suff iciently)

smooth and monotonically decreasing function of t. The fields D, B are

introduced so as to simplify the formulation of Maxwell’s equations and, in

particular,~~,E e0~.
+Lwhere E

c~ 
> 0  is a known physical constant andPis

the polarization field vector in the dielectric, which is assumed to be

nonconducting (i.e., no free mobile charges so that divD= 0).

Let S2 C Rn be a bounded open domain with smooth boundary 3~2 (smooth

enough to apply the divergence theorem). Let c ~2. We assume that ~2/~
is filled with a perfect conductor, so that D — 0 in ~2/~ and on ~~, and

that ~ is filled with a nonconducting right dielectric of Maxwell—Hopkinson

type so that the constitutive equations (3.1) apply in ~~~. On ~~~~

i.e., at the interface between the dielectric and the perfect conductor,

D . n = 0 where n is the unit outward normal to ~~~~~. It has been shown in— —
t3] that if we combine Maxwell’s equations in ~, with

(i) the constitutive relations (3.1) with

• 0 ~. 0 0 < t< _ t
— ‘ It

E(x t)—
—

~~~~ ~~~~~~~~~~~ 
_ t
h 

� -r < 0

for some t
h 

> 0

(ii) the inverted constitutive equation

E(~,,t) — €~~~~~(~~,,t) + 
~~~~

• I.

— ~~~~~~~~~~~~~~~~~~~~~ 
~~~_____________ ••-••———— ~~___

•~~~x•_ i ~~~~~~~~~~~ —•..—-— -•—~.-. •— ••.—--~~~~~
,•-- _~_,ii• ~ 

•
~——~~

•-- — —
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•(t ) — ! (~ l)~ 41!~(t)

— c~~41(t), $
‘
~(t) 

— f ~ 411(t—t )41’~~
1
~~r)dt , n � 2

h

obtained from (3.lu
) via the usual method of successive approximations and

(iii) the elementary vector identity

AA — grad(div ~) — curl curl ~~,

valid for~~,(’) sufficiently smooth on ~ 
(and applied to E(’,t) at each

L C C~~~~t~~~~,
00)) we obtain the following equation for the evolution of

the components Di
(x,t) of the electric displacement field in ~ X [_th,00).

- •

- • 
(3.2) (~~l~) — j~ V

2n~ç~ ,t) — 

~ •••th i —.? — o

where k — cli. From the homogeneity of (3.2) and the fact that I) in 12/n

it follows that (3.2) is satisfied everywhere in ~ for 
_t
h 

� ~ 
< 00, ~ fl

we have

(3.3a) Di
(x,t) — 0, (x t) C X E t h

, )

and to this we append initial data of the form

(3.3b) D1
(x,0) — f (x) ~~~~~~ (x O) g~ (x) , x C

— 

where it is assumed that 
~~~~~~~~~ 

g1() are continuously differentiable on

and vanish identically in c2/Q. In view of (3.2) and the previous specification

of a past history for E(x,t) we also have

—~~~ - -~~~rn ~~~~~~~-.-- --- —-- --  

—
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(3.3c) D(x,T) —

~~~~(~~~~t) ,  
~
th 

� t < 0

for x C

If we now take for H, 11
+, 

11 the common Sobolev spaces N — L2
((~)

3 E L
2
(çe),

— (H~(~ ))~ E R ~(c2), and H — (H~~(~ ))~ ~~H~~(~2) and def ine operators

N C L (~1 , R~~) and K ( )  C L2 ( (—° ,o~); L (,~~~
, 11)) via

— s O — ’  

a
2v 

—

(3.4a) — 
~ ax~~ x~ 

C

(3.4b) (~,(t)v)
1 

— — 
~~
t) ( N v ) i, ~~~~ C ~~ (cz) , t C [_t h,00)

then the initial—history boundary value problem (3.2), (3.3a) — (3.3c) assumes

the form

D — N D + K(t—t)D(t)dr — ~ —t ~ ~~ 
< 00

—tt —— t
h
_ — b

(3.5) D(0) f,D
~
(O) — g

0, — < -1 < —t
h-t D(t) —

q’2h
( t ) ,  th � T < O

an initial-history value problem for~~,C C
2([_ th,°°);j~

) ,  where we need only

assume that j, gC1I ~~~ (c2) , )
~~~~

)
~~ 1 ~ 

L
l
[_t h, O), and where, of course , it is

understood that the derivatives in (3.4a), (3.4b) are to be taken in the

distribution sense.

For the spaces ,~~(c2) , _~~(~2) introduced above we have the familiar inner—

products

— --—--- - - . - —  -t —.• - . -  — -- -r---- —-

h—s.—— - - .. - - - ~~~~ 
j  fl ..Lr—.- kt_ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

---~~~~~~~~ -—-~~— -~~~~~~ --~~~~~ 4_~~__ _ -• - •— - - - --~~~~~ 
- ------- -- - - .~- — _-~~ - - -- 

-—--
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v — f~
.
~
uivj

dx

(3.6) au av

~~. i i

The set N0,00 
introduced in §2 thus has the form

(3.7) — {v £ C([_9~,00)~ ~ (~l)I ~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ dx)½ ~ N0)

while

(3.8) E(0) — ½ 1 I~ I I~ — ½ < t , N f >L— =2

— ½ f~g~g1 dx — ~ f ~ ~~ ax~ ax~ 
dx

- . af af ~f
- ½ f~~~g~dx - 

~~ 
[ff 1 ~~~~~~~~~ n~dx - f ~ ~~~~~~~~~~~~~~~~~~~~ dx]

af af
— ½ [ f ~-~ g~g1dx + 

~~~ 
f ~ 

.

~~~~~~ 
.5;~t dx]

- ½ [II ~ll~~+~~I IiJ I 21)

I ILI {2 i
so that E(0) < 0 iff k < 0 with 1k! > 

0

I LaI I
2
L

Also , for any v C

— < !‘ 
~ ,

>

~~~ 

— Ic1 v~ CK(O)v]~ dx

- 41
1
~0J j~ Vj d~

_ _ _ _ _ _ _ _ _  ~~~~~- --~~~~ :. .
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— ~~°) II v I $~ � o
k H1

if k < 0 and •(O) � 0. Note now that

hj c1Vni [K( t)v]
i 

dx
(3.10) I IL (t)IIL (111, H 1) 

— 
~~~~ 1 2

I~(t)J IJc1 ~‘i ax
”

~x~ ~~ —
— sup
v C ,~~ lkI.I1~JI

2
1
—0

- ~(t)I/IkI, 
< ~ 

< 0 0

- .  
and that, in a similar manner,

(3.11) l I~t(t)HL (H1. H
1
) 

— I~(t)I/Ikl
s—0 —

Therefore , for the problem at hand we have

(3.12) K(t) f~~( t ) f / I k l ,  K*(t) - 

~~~ 
f f~ (t)~ dt

and the hypotheses (2.3) will be satisfied provided

!~ I~(t)Idt < 00~ f I~
(t)Idt I~.,o 

— 0, and

1 f~~~ 1~ (A )I dA dt < 00~

With the above hypotheses relative to k , I~
(.)I, !~(•)1, ~ (O) , and the

additional assumption that < f , 
~
>
L 

> 0 it then follows from the Theorem
—2

of §2 that if for N0 > 0 (finite)

— - - — - — — -  . ~~~~~~~~~~~~~~— - - -  — . - - — ~~~~—-- —
~~~~

— - --

1IL ~ - —  -~~~~~-- .  — — --i -~~~ -—---~~ ~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~ —
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(3.13) I lL)!
2
1 � IkI.IIjI~~ + 3m~ C f I~(t)Idt

+ f f ~ ~ (A)~ dAdt)

there can not exist a strong solution of the initial—history value problem

(3.5) which lies in the class of bounded perturbations N000. In passing,

we remark that 1, the embedding constant for the identity map i:

J~2 (c1) depends soley on the region c1. For c1 such that y is very

small (<6~) and with a memory function 41(t) such that I IK I ‘L [0 00~ 
and

1 ’ ’

I 1K ~ J J ~ [ 0  00) 
are also very small (<6

2 6) (3.13) is implied by1 ’

-• 

(3.14) I I.LI I~~ 
� 1k! I(~ I I~ + cS

16
2N~

which indicates that as 6
1
6
2 

- 0 the existence inN 000 of a solution

u to the initial—history value problem (3.5) depends essentially on the

relationship between the relative magnitudes in H1 and L of the initial—values
—.0 —2

of the electric displacement field and its first time derivative.

-- -~~~~~ — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~_ T~~
- _

~
_ 

~~~~~~~~~~~~~~~~~~
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